I am current working on four caffe models for detection, classification and segmentation.
This is served as an log file.
cifar
for different net: parameter+h -> mat
for diff image: layers
Models used by the VGG team in ILSVRC-2014
VGG_ILSVRC_19_layers
for classification, imagenet 1000 categories(OUTUPT:10X1000 prob)
check the classification result for category
GoogLeNet GPU implementation from Princeton.
``
for classification, imagenet 1000 categoriesCNN Models for Salient Object Subitizing.
AlexNet_SalObjSub
- AlexNet_SalObjSub.caffemodel ./scripts/download_model_from_gist.sh 0585ed9428dc5222981f http://www.cs.bu.edu/groups/ivc/data/SOS/AlexNet_SalObjSub.caffemodel
any image
- visuilization
Fully Convolutional Semantic Segmentation Models (FCN-Xs)
fcn-32s-pascal
for segmentation, pascal voc 20 categories**FCN-8s PASCAL**: three stream, 8 pixel prediction stride version ./scripts/download_model_from_gist.sh 91eece041c19ff8968ee http://dl.caffe.berkeleyvision.org/fcn-8s-pascal.caffemodel **FCN-32s PASCAL**: three stream, 32 pixel prediction stride version ./scripts/download_model_from_gist.sh ac410cad48a088710872 wget http://dl.caffe.berkeleyvision.org/fcn-32s-pascal.caffemodel
- visuilization
Conditional Random Fields as Recurrent Neural Networks
bvlc_reference_rcnn_ilsvrc13
for segmentation, pascal voc 20 categories./scripts/download_model_from_gist.sh a7e397abbda52c0b90323c23ab95bdeabee90a98 http://goo.gl/j7PrPZ
1 | download model: |
Test on
PASCAL 20 categories:
Aeroplanes
Bicycles
Birds
Boats
Bottles
Buses
Cars
Cats
Chairs
Cows
Dining tables
Dogs
Horses
Motorbikes
People
Potted plants
Sheep
Sofas
Trains
TV/Monitors